Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Appl Toxicol. 2010 Oct;30(7):649-55. doi: 10.1002/jat.1535.

Acrylonitrile induced apoptosis via oxidative stress in neuroblastoma SH-SY5Y cell.

Author information

  • 1Laboratory of Pharmacology, Chulabhorn Research Institute, 54 Moo 4 Vibhavadee-Rangsit Highway, Bangkok 10210, Thailand.

Abstract

Acrylonitrile (ACN) is a chemical that is widely used in the production of plastics, acrylic fibers, synthetic rubbers and resins. It has been reported that ACN can cause oxidative stress, a condition which is well recognized as an apoptotic initiator; however, information regarding ACN-induced apoptosis is limited. This present study investigated whether ACN induces apoptosis in human neuroblastoma SH-SY5Y cells, and whether its apoptotic induction involves oxidative stress. The results showed that ACN caused activation of caspase-3, a key enzyme involved in apoptosis, in a dose- and time-dependent manner. Detection of sub-G1 apoptotic cell death and apoptotic nuclear condensation revealed that ACN caused an increase in the number of apoptotic cells indicating ACN induces apoptosis in SH-SY5Y cells. ACN dose- and time-dependently increased the level of proapoptotic protein, Bax. Pretreatment with N-acetylcysteine (NAC), an antioxidant, attenuated caspase-3 activation by ACN, as evidenced by a reduction in proteolysis of PARP, a known caspase-3 substrate, as well as in the number of sub-G1 apoptotic cells. Moreover, induction of Bax by ACN was abolished by NAC. Taken together, the results indicate that ACN induces apoptosis in SH-SY5Y cells via a mechanism involving generation of oxidative stress-mediated Bax induction.

Copyright © 2010 John Wiley & Sons, Ltd.

PMID:
20981856
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk