Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Nat Commun. 2010 Oct 19;1:99. doi: 10.1038/ncomms1102.

Dynamic evolution of precise regulatory encodings creates the clustered site signature of enhancers.

Author information

  • 1Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.


Concentration gradients of morphogenic proteins pattern the embryonic axes of Drosophila by activating different genes at different concentrations. The neurogenic ectoderm enhancers (NEEs) activate different genes at different threshold levels of the Dorsal (Dl) morphogen, which patterns the dorsal/ventral axis. NEEs share a unique arrangement of highly constrained DNA-binding sites for Dl, Twist (Twi), Snail (Sna) and Suppressor of Hairless (Su(H)), and encode the threshold variable in the precise length of DNA that separates one well-defined Dl element from a Twi element. However, NEEs also possess dense clusters of variant Dl sites. Here, we show that these increasingly variant sites are eclipsed relic elements, which were superseded by more recently evolved threshold encodings. Given the divergence in egg size during Drosophila lineage evolution, the observed characteristic clusters of divergent sites indicate a history of frequent selection for changes in threshold responses to the Dl morphogen gradient and confirm the NEE structure/function model.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (8)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk