Send to

Choose Destination
See comment in PubMed Commons below
Aging (Albany NY). 2010 Oct;2(10):742-7.

EAK proteins: novel conserved regulators of C. elegans lifespan.

Author information

  • 1Life Sciences Institute, University of Michigan, Ann Arbor, 48109, USA.


FoxO transcription factors (TFs) extend lifespan in invertebrates and may participate in the control of human longevity. The role of FoxO TFs in lifespan regulation has been studied most extensively inC. elegans, where a conserved insulin/insulin-like growth factor signaling (IIS) pathway and the germline both control lifespan by regulating the subcellular localization of the FoxO transcription factor DAF-16. Although the control of FoxO activity through modulation of its subcellular localization is well established, nuclear translocation of FoxO is not sufficient for full FoxO activation, suggesting that undiscovered inputs regulate FoxO activity after its translocation to the nucleus. We have recently discovered a new conserved pathway, the EAK (enhancer-of-akt-1) pathway, which acts in parallel to the Akt/PKB family of serine-threonine kinases to regulate DAF-16/FoxO activity. Whereas mutation of Akt/PKB promotes the nuclear accumulation of DAF-16/FoxO, mutation of eak genes increases nuclear DAF-16/FoxO activity without influencing DAF-16/FoxO subcellular localization. Thus, EAK proteins regulate the activity of nuclear DAF-16/FoxO. Two EAK proteins, EAK-2/HSD-1 and EAK-7, influence C. elegans lifespan and are conserved in mammals. The discovery of the EAK pathway defines a new conserved FoxO regulatory input and may have implications relevant to aging and the pathogenesis of aging-associated diseases.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Impact Journals, LLC Icon for PubMed Central
    Loading ...
    Write to the Help Desk