Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19449-54. doi: 10.1073/pnas.1008155107. Epub 2010 Oct 25.

Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β.

Author information

  • 1Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland.

Abstract

Nanoparticles are increasingly used in various fields, including biomedicine and electronics. One application utilizes the opacifying effect of nano-TiO(2), which is frequently used as pigment in cosmetics. Although TiO(2) is believed to be biologically inert, an emerging literature reports increased incidence of respiratory diseases in people exposed to TiO(2). Here, we show that nano-TiO(2) and nano-SiO(2), but not nano-ZnO, activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome, leading to IL-1β release and in addition, induce the regulated release of IL-1α. Unlike other particulate Nlrp3 agonists, nano-TiO(2)-dependent-Nlrp3 activity does not require cytoskeleton-dependent phagocytosis and induces IL-1α/β secretion in nonphagocytic keratinocytes. Inhalation of nano-TiO(2) provokes lung inflammation which is strongly suppressed in IL-1R- and IL-1α-deficient mice. Thus, the inflammation caused by nano-TiO(2) in vivo is largely caused by the biological effect of IL-1α. The current use of nano-TiO(2) may present a health hazard due to its capacity to induce IL-1R signaling, a situation reminiscent of inflammation provoked by asbestos exposure.

PMID:
20974980
[PubMed - indexed for MEDLINE]
PMCID:
PMC2984140
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk