Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Tissue Eng Part A. 2011 Mar;17(5-6):809-17. doi: 10.1089/ten.TEA.2010.0255. Epub 2010 Dec 18.

Autogenous bone marrow stromal cell sheets-loaded mPCL/TCP scaffolds induced osteogenesis in a porcine model of spinal interbody fusion.

Author information

  • 1Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore.

Abstract

This study was designed to investigate whether a tissue-engineered construct composed of autogenous cell sheets and a polycaprolactone-based bioresorbable scaffold would enhance bone regeneration and spinal interbody fusion in a large animal model. Porcine-derived autogenous bone marrow stromal cells (BMSCs) cultured into multilayered cell sheets were induced into osteogenic differentiation with dexamethasone, l-ascorbic acid, and β-glycerol phosphate. These cell sheets were assembled with bioresorbable scaffolds made from medical-grade poly(epsilon-caprolactone) incorporating 20% β-tricalcium phosphate (mPCL/TCP) as tissue-engineered BMSC constructs. L2/3, L4/5 discectomies and decortication of the vertebral end plates were performed on 16 SPF Yorkshire pigs through an anterolateral approach. The tissue-engineered BMSC constructs were transplanted into the prepared intervertebral disc spaces of half of the pigs (n = 8), whereas cell-free mPCL/TCP served as controls in the remaining pigs. New bone formation and spinal fusion were evaluated at 3 and 6 months using microcomputed tomography, histology, fluorochrome bone labeling, and biomechanical testing. New bone formation was evident as early as 3 months in the BMSC group. At 6 months, bony fusion was observed in >60% (5/8) of segments in the BMSC group. None of the control animals with cell-free scaffold showed fusion at both time points. Biomechanical evaluation further revealed a significantly increased segmental stability in the BMSC group compared with the cell-free group at 6 months postimplantation (p < 0.01). These findings suggest that mPCL/TCP scaffolds loaded with in vitro differentiated autogenous BMSC sheets could induce bone formation and interbody fusion. This in turn resulted in enhanced segmental stability of the lumbar spine.

PMID:
20973747
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk