Display Settings:

Format

Send to:

Choose Destination
J Comput Biol. 2010 Nov;17(11):1549-60. doi: 10.1089/cmb.2010.0127. Epub 2010 Oct 25.

EDAR: an efficient error detection and removal algorithm for next generation sequencing data.

Author information

  • 1Siemens Corporate Research , Princeton, New Jersey, USA.

Abstract

Genomic sequencing techniques introduce experimental errors into reads which can mislead sequence assembly efforts and complicate the diagnostic process. Here we present a method for detecting and removing sequencing errors from reads generated in genomic shotgun sequencing projects prior to sequence assembly. For each input read, the set of all length k substrings (k-mers) it contains are calculated. The read is evaluated based on the frequency with which each k-mer occurs in the complete data set (k-count). For each read, k-mers are clustered using the variable-bandwidth mean-shift algorithm. Based on the k-count of the cluster center, clusters are classified as error regions or non-error regions. For the 23 real and simulated data sets tested (454 and Solexa), our algorithm detected error regions that cover 99% of all errors. A heuristic algorithm is then applied to detect the location of errors in each putative error region. A read is corrected by removing the errors, thereby creating two or more smaller, error-free read fragments. After performing error removal, the error-rate for all data sets tested decreased (∼35-fold reduction, on average). EDAR has comparable accuracy to methods that correct rather than remove errors and when the error rate is greater than 3% for simulated data sets, it performs better. The performance of the Velvet assembler is generally better with error-removed data. However, for short reads, splitting at the location of errors can be problematic. Following error detection with error correction, rather than removal, may improve the assembly results.

PMID:
20973743
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Write to the Help Desk