Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18939-43. doi: 10.1073/pnas.1013230107. Epub 2010 Oct 18.

T-cell receptor-driven lymphomagenesis in mice derived from a reprogrammed T cell.

Author information

  • 1Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA. thomas.serwold@joslin.harvard.edu

Abstract

The conversion of mature somatic cells into pluripotent stem cells, both by nuclear transfer and transduction with specific "reprogramming" genes, represents a major advance in regenerative medicine. Pluripotent stem cell lines can now be generated from an individual's own cells, facilitating the generation of immunologically acceptable stem cell-based therapeutics. Many cell types can undergo nuclear reprogramming, leading to the question of whether the identity of the reprogrammed cell of origin has a biological consequence. Peripheral blood, containing a mixture of T, B, NK, and myeloid cell types, represents one potential source of reprogrammable cells. In this study, we describe the unique case of mice derived from a reprogrammed T cell. These mice have prerearranged T-cell receptor (TCR) genes in all cells. Surprisingly, ≈50% of mice with prerearranged TCR genes develop spontaneous T cell lymphomas, which originate in the thymus. The lymphomas arise from developing T cells, and contain activated Notch1, similar to most human and mouse T-cell acute lymphoblastic lymphomas. Furthermore, lymphomagenesis requires the expression of both prerearranged TCRα and TCRβ genes, indicating a critical role for TCR signaling. Furthermore, inhibitors of multiple branches of TCR signaling suppress lymphoma growth, implicating TCR signaling as an essential component in lymphoma proliferation. The lymphomagenesis in mice derived from a reprogrammed T cell demonstrates the deleterious consequences of misregulation of the TCR rearrangement and signaling pathways and illustrates one case of cellular reprogramming where the identity of the cell of origin has profound consequences.

PMID:
20956329
[PubMed - indexed for MEDLINE]
PMCID:
PMC2973852
Free PMC Article

Images from this publication.See all images (3)Free text

Fig. 1.
Fig. 2.
Fig. 3.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk