Send to

Choose Destination
See comment in PubMed Commons below
Neurosci Lett. 2011 Jan 7;487(2):158-62. doi: 10.1016/j.neulet.2010.10.013. Epub 2010 Oct 14.

Post-ischemic activation of protein kinase C ε protects the hippocampus from cerebral ischemic injury via alterations in cerebral blood flow.

Author information

  • 1Department of Neurology, University of Miami, Miami, FL 33101, USA.


Protein kinase C (PKC) is a family of serine/threonine-isozymes that are involved in many signaling events in normal and disease states. Previous studies from our lab have demonstrated that ɛPKC plays a pivotal role in neuroprotection induced by ischemic preconditioning. However, the role of ɛPKC during and after brain ischemia is not clearly defined. Therefore, in the present study, we tested the hypothesis that activation of ɛPKC during an ischemic event is neuroprotective. Furthermore, other studies have demonstrated that ɛPKC mediates cerebral ischemic tolerance in the rat brain by decreasing vascular tone. Thus, we also tested the effects of ɛPKC activation during ischemia on cerebral blood flow (CBF). We found that ψɛ-Receptors for Activated C Kinase (RACK), a ɛPKC-selective peptide activator, injected intravenously 30min before induction of global cerebral ischemia conferred neuroprotection in the CA1 region of the rat hippocampus. Moreover, measurements of CBF before, during, and after cerebral ischemia revealed a significant reduction in the reperfusion phase of rats pretreated with ψɛRACK as compared to Tat peptide (vehicle). Our results suggest that ɛPKC can protect the rat brain against ischemic damage by regulating CBF. Thus, ɛPKC may be one of the treatment modalities against ischemic injury.

Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk