Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2010 Sep 13;18(19):19541-57. doi: 10.1364/OE.18.019541.

Toward ultimate miniaturization of high Q silicon traveling-wave microresonators.

Author information

  • 1School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250, USA.


High Q traveling-wave resonators (TWR)s are one of the key building block components for VLSI Photonics and photonic integrated circuits (PIC). However, dense VLSI integration requires small footprint resonators. While photonic crystal resonators have shown the record in simultaneous high Q (~10(5)-10(6)) and very small mode volumes; the structural simplicity of TWRs has motivated many ongoing researches on miniaturization of these resonators with maintaining Q in the same range. In this paper, we investigate the scaling issues of silicon traveling-wave microresonators down to ultimate miniaturization levels in SOI platforms. Two main constraints that are considered during this down scaling are: 1) Preservation of the intrinsic Q of the resonator at high values, and 2) Compatibility of resonator with passive (active) integration by preserving the SiO(2) BOX layer (plus a thin Si slab layer for P-N junction fabrication). Microdisk and microdonut (an intermediate design between disk and ring shape) are considered for high Q, miniaturization, and single-mode operation over a wide wavelength range (as high as the free-spectral range). Theoretical and experimental results for miniaturized resonators are demonstrated and Q's as high as ~10(5) for resonators as small as 1.5 μm radius are achieved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk