Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2010 Oct 15;70(20):8088-96. doi: 10.1158/0008-5472.CAN-10-1418. Epub 2010 Oct 12.

Prostate cancer radiosensitization through poly(ADP-Ribose) polymerase-1 hyperactivation.

Author information

  • 1Departments of Pharmacology, Radiation Oncology, Pathology, Biostatistics and Clinical Sciences, and Urology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8807, USA.


The clinical experimental agent, β-lapachone (β-lap; Arq 501), can act as a potent radiosensitizer in vitro through an unknown mechanism. In this study, we analyzed the mechanism to determine whether β-lap may warrant clinical evaluation as a radiosensitizer. β-Lap killed prostate cancer cells by NAD(P)H:quinone oxidoreductase 1 (NQO1) metabolic bioactivation, triggering a massive induction of reactive oxygen species, irreversible DNA single-strand breaks (SSB), poly(ADP-ribose) polymerase-1 (PARP-1) hyperactivation, NAD(+)/ATP depletion, and μ-calpain-induced programmed necrosis. In combination with ionizing radiation (IR), β-lap radiosensitized NQO1(+) prostate cancer cells under conditions where nontoxic doses of either agent alone achieved threshold levels of SSBs required for hyperactivation of PARP-1. Combination therapy significantly elevated SSB level, γ-H2AX foci formation, and poly(ADP-ribosylation) of PARP-1, which were associated with ATP loss and induction of μ-calpain-induced programmed cell death. Radiosensitization by β-lap was blocked by the NQO1 inhibitor dicoumarol or the PARP-1 inhibitor DPQ. In a mouse xenograft model of prostate cancer, β-lap synergized with IR to promote antitumor efficacy. NQO1 levels were elevated in ∼60% of human prostate tumors evaluated relative to adjacent normal tissue, where β-lap might be efficacious alone or in combination with radiation. Our findings offer a rationale for the clinical utilization of β-lap (Arq 501) as a radiosensitizer in prostate cancers that overexpress NQO1, offering a potentially synergistic targeting strategy to exploit PARP-1 hyperactivation.

©2010 AACR.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk