Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18646-51. doi: 10.1073/pnas.1012175107. Epub 2010 Oct 11.

Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors.

Author information

  • 1Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.

Abstract

Clostridium thermocellum produces a highly efficient cellulolytic extracellular complex, termed the cellulosome, for hydrolyzing plant cell wall biomass. The composition of the cellulosome is affected by the presence of extracellular polysaccharides; however, the regulatory mechanism is unknown. Recently, we have identified in C. thermocellum a set of putative σ and anti-σ factors that include extracellular polysaccharide-sensing components [Kahel-Raifer et al. (2010) FEMS Microbiol Lett 308:84-93]. These factor-encoding genes are homologous to the Bacillus subtilis bicistronic operon sigI-rsgI, which encodes for an alternative σ(I) factor and its cognate anti-σ(I) regulator RsgI that is functionally regulated by an extracytoplasmic signal. In this study, the binding of C. thermocellum putative anti-σ(I) factors to their corresponding σ factors was measured, demonstrating binding specificity and dissociation constants in the range of 0.02 to 1 μM. Quantitative real-time RT-PCR measurements revealed three- to 30-fold up-expression of the alternative σ factor genes in the presence of cellulose and xylan, thus connecting their expression to direct detection of their extracellular polysaccharide substrates. Cellulosomal genes that are putatively regulated by two of these σ factors, σ(I1) or σ(I6), were identified based on the sequence similarity of their promoters. The ability of σ(I1) to direct transcription from the sigI1 promoter and from the promoter of celS (encodes the family 48 cellulase) was demonstrated in vitro by runoff transcription assays. Taken together, the results reveal a regulatory mechanism in which alternative σ factors are involved in regulating the cellulosomal genes via an external carbohydrate-sensing mechanism.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk