Format

Send to

Choose Destination
See comment in PubMed Commons below
J Diabetes. 2010 Dec;2(4):275-81. doi: 10.1111/j.1753-0407.2010.00087.x.

Effect of diabetes on enzymes involved in rat hepatic corticosterone production.

Author information

  • 1Department of Pediatrics University of Alabama at Birmingham, Birmingham, Alabama, USA.

Abstract

BACKGROUND:

Numerous studies have explored the etiologic or permissive role of 11β-hydroxysteroid dehydrogenase (11β-HSD1) in obesity and Type 2 diabetes, biochemical conditions often with concurrent hyperinsulinism. In contrast, there are limited data on the effect of insulin deficiency (i.e. Type 1 diabetes) on 11β-HSD1 or endoplasmic reticulum enzymes that generate the reduced pyridine cofactor NADPH. Thus, the aim of the present study was to examine the effect of insulin-deficient, streptozotozin diabetes on key microsomal enzymes involved in rat hepatic corticosterone production.

METHODS:

After rats had been rendered diabetic with streptozotocin and some had been treated with insulin (2-6 units, s.c., long-acting insulin once daily) for 7 days, hepatic microsomes were isolated. Serum corticosterone and fructosamine were obtained premortem. Intact microsomes were incubated in vitro and 11β-HSD1, hexose-6-phosphate dehydrogenase (H6PDH), and isocitrate dehydrogenase (IDH) measured.

RESULTS:

Although diabetes markedly altered body weight gain and serum protein glycosylation (assessed by fructosamine), there was no significant change in hepatic 11β-HSD1 reductase activity, with or without insulin treatment. However, serum corticosterone levels were significantly correlated with 11β-HSD1 reductase activity when all groups were analyzed together (P < 0.05). Untreated diabetes modified (P < 0.01) two hepatic microsomal NADPH-generating enzymes, namely H6PDH and IDH, resulting in a 37% decrease and 14% increase in enzyme levels, respectively.

CONCLUSIONS:

Consistent with most in vivo studies, chronic insulin deficiency with attendant hyperglycemia does not significantly modify hepatic 11β-HSD1 reductase activity, but does alter the activity of two microsomal enzymes coupled with pyridine cofactors.

© 2010 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Blackwell Publishing Asia Pty Ltd.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk