Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2010 Dec 10;285(50):38944-50. doi: 10.1074/jbc.M110.160325. Epub 2010 Oct 1.

Plk3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF-1alpha.

Author information

  • 1Department of Environmental Medicine and Pharmacology, New York University School of Medicine, Tuxedo, New York 10987, USA.


Polo-like kinase 3 (Plk3) plays an important role in the regulation of cell cycle progression and stress responses. Plk3 also has a tumor-suppressing activity as aging PLK3-null mice develop tumors in multiple organs. The growth of highly vascularized tumors in PLK3-null mice suggests a role for Plk3 in angiogenesis and cellular responses to hypoxia. By studying primary isogenic murine embryonic fibroblasts, we tested the hypothesis that Plk3 functions as a component in the hypoxia signaling pathway. PLK3(-/-) murine embryonic fibroblasts contained an enhanced level of HIF-1α under hypoxic conditions. Immunoprecipitation and pulldown analyses revealed that Plk3 physically interacted with HIF-1α under hypoxia. Purified recombinant Plk3, but not a kinase-defective mutant, phosphorylated HIF-1α in vitro, resulting in a major mobility shift. Mass spectrometry identified two unique serine residues that were phosphorylated by Plk3. Moreover, ectopic expression followed by cycloheximide or pulse-chase treatment demonstrated that phospho-mutants exhibited a much longer half-life than the wild-type counterpart, strongly suggesting that Plk3 directly regulates HIF-1α stability in vivo. Combined, our study identifies Plk3 as a new and essential player in the regulation of the hypoxia signaling pathway.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk