Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Physiol. 2010 Nov 15;588(Pt 22):4475-88. doi: 10.1113/jphysiol.2010.198366. Epub 2010 Sep 27.

Spike-timing-dependent plasticity in hippocampal CA3 neurons.

Author information

  • 1Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany.

Abstract

Synaptic plasticity of different inputs converging onto CA3 pyramidal neurons is central to theories of hippocampal function. The mossy fibre (MF) input to these neurons is thought to exhibit plasticity that is in nearly all aspects fundamentally different from plasticity in other brain regions: in particular, when induced by high frequency presynaptic stimulation, plasticity at these synapses is independent of NMDA receptor (NMDAR) activation and presynaptically expressed. Here, we show that different stimulation protocols that depend on the close timing of MF activity and postsynaptic spikes induce bidirectional plasticity in CA3 neurons in 3-week-old rats. Long-term potentiation (LTP) is observed when an excitatory postsynaptic potential (EPSP), evoked by MF stimulation, precedes a single postsynaptic action potential (AP) or a brief AP burst by 10 ms. Instead, timing-dependent long-term depression (LTD) requires the pairing of a single AP to an EPSP with a delay of 30 ms. The pairing of APs to synaptic activity is required for plasticity induction, since the application of unpaired APs or EPSPs did not alter synaptic strength. Furthermore, our results demonstrate that both timing-dependent LTP and LTD critically depend on the activation of NMDARs. Specifically blocking postsynaptic NMDARs prevents plasticity, demonstrating that NMDARs important to spike-timing-dependent plasticity in CA3 neurons are required at postsynaptic sites. In summary, this study shows that the close timing of APs to MF excitatory synaptic input can alter synaptic efficacy in CA3 neurons in a bidirectional manner.

PMID:
20876200
[PubMed - indexed for MEDLINE]
PMCID:
PMC3008852
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk