Send to:

Choose Destination
See comment in PubMed Commons below
J Appl Toxicol. 2011 Mar;31(2):164-72. doi: 10.1002/jat.1577. Epub 2010 Sep 23.

A novel 7-azaisoindigo derivative-induced cancer cell apoptosis and mitochondrial dysfunction mediated by oxidative stress.

Author information

  • 1School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China.


This research focused on a novel 7-azaisoindigo derivative [namely N(1)-(n-butyl)-7-azaisoindigo, 7-AI-b], and investigated its molecular antitumor mechanism by exploring the means of cell death and the effects on mitochondrial function. 7-AI-b inhibited cancer cell proliferation in a dose- and time-dependent way. The morphological and nuclei changes in H(2) B-GFP-labeled HeLa cells were observed using a live cell system. The results suggested that cell death induced by 7-AI-b is closely related to apoptosis. 7-AI-b induced release of cytochrome C from mitochondria to cytosol and activation of caspase-3, showing that the apoptosis is mediated by the mitochondrial pathway. Furthermore, our data indicated that 7-AI-b triggers apoptosis through reactive oxygen species (ROS): cellular ROS levels were increased after 3 h exposure of 7-AI-b, which was reversed by the ROS scavenger N-acetyl-L-cysteine. As a consequence, 7-AI-b-mediated cell death, mitochondrial transmembrane potential collapse and ATP level were partly blocked by N-acetyl-L-cysteine. Further study showed that 7-AI-b could induce mitochondrial dysfunction: collapse of the mitochondrial transmembrane potential and reduction of intracellular ATP level. In summary, the novel synthesized 7-AI-b was demonstrated to be effective in killing cancer cells via an ROS-promoted and mitochondria- and caspase-dependent apoptotic pathway.

Copyright © 2010 John Wiley & Sons, Ltd.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk