Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2010 Nov 1;70(21):8695-705. doi: 10.1158/0008-5472.CAN-10-2318. Epub 2010 Sep 23.

{Gamma}-tocotrienol inhibits pancreatic tumors and sensitizes them to gemcitabine treatment by modulating the inflammatory microenvironment.

Author information

  • 1Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.

Abstract

Pancreatic cancers generally respond poorly to chemotherapy, prompting a need to identify agents that could sensitize tumors to treatment. In this study, we investigated the response of human pancreatic cells to γ-tocotrienol (γ-T3), a novel, unsaturated form of vitamin E found in palm oil and rice bran oil, to determine whether it could potentiate the effects of gemcitabine, a standard of care in clinical treatment of pancreatic cancer. γ-T3 inhibited the in vitro proliferation of pancreatic cancer cell lines with variable p53 status and potentiated gemcitabine-induced apoptosis. These effects correlated with an inhibition of NF-κB activation by γ-T3 and a suppression of key cellular regulators including cyclin D1, c-Myc, cyclooxygenase-2 (COX-2), Bcl-2, cellular inhibitor of apoptosis protein, survivin, vascular endothelial growth factor (VEGF), ICAM-1, and CXCR4. In an orthotopic nude mouse model of human pancreatic cancer, p.o. administration of γ-T3 inhibited tumor growth and enhanced the antitumor properties of gemcitabine. Immunohistochemical analysis indicated a correlation between tumor growth inhibition and reduced expression of Ki-67, COX-2, matrix metalloproteinase-9 (MMP-9), NF-κB p65, and VEGF in the tissue. Combination treatment also downregulated NF-κB activity along with the NF-κB-regulated gene products, such as cyclin D1, c-Myc, VEGF, MMP-9, and CXCR4. Consistent with an enhancement of tumor apoptosis, caspase activation was observed in tumor tissues. Overall, our findings suggest that γ-T3 can inhibit the growth of human pancreatic tumors and sensitize them to gemcitabine by suppressing NF-κB-mediated inflammatory pathways linked to tumorigenesis.

©2010 AACR.

PMID:
20864511
[PubMed - indexed for MEDLINE]
PMCID:
PMC2970705
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk