Send to:

Choose Destination
See comment in PubMed Commons below
Toxicol Lett. 2010 Dec 15;199(3):269-76. doi: 10.1016/j.toxlet.2010.09.009. Epub 2010 Sep 21.

Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells.

Author information

  • 1Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 427 Jumen Road, Shanghai 200023, China.


Despite that applications of titanium dioxide nanoparticles (TiO(2)-NPs) have been developed in the fields of paints, waste water treatment, sterilization, cosmetics, food additive, bio-medical ceramic and implant biomaterials and so on, relatively few studies have been conducted to determine the neurotoxicity of TiO(2)-NPs exposure. In the present study, we investigated the cytotoxicity of TiO(2)-NPs using PC12 cells and intended to clarify the molecular mechanisms underlying the biological effects of TiO(2)-NPs. PC12 cell is a type of cells, which have been used as an in vitro model of dopaminergic neurons for neurodegenerative diseases research. In addition, the roles of the particle size and crystal structure of TiO(2)-NPs to the neurotoxicity were also investigated. The anatase TiO(2)-NPs displayed a dose-dependent behavior on decreasing cell viability, increasing levels of lactate dehydrogenase (LDH), activating oxidative stress, inducing apoptosis, disturbing cell cycle, triggering JNK- and p53-mediated signaling pathway. In comparison to anatase TiO(2)-NPs, the rutile TiO(2)-NPs showed moderately toxic effect on neuron cells. The micron-sized TiO(2) did not exhibit any toxic response. It is suggested from our results that reactive oxygen species (ROS) have a mediation effect to oxidative stress and up-regulation of JNK and P53 phosphorylation involved in mechanistic pathways of TiO(2)-NPs can induce apoptosis and cell cycle arrest in PC12 cells. In addition, both the size and crystal structure of TiO(2)-NPs exposure contributed to the neurotoxicity. Nanoparticles were more toxic than micrometer-sized particles and the anatase form were more toxic than the rutile.

Crown Copyright © 2010. Published by Elsevier Ireland Ltd. All rights reserved.

Comment in

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk