Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2010 Sep 16;5(9). pii: e12739. doi: 10.1371/journal.pone.0012739.

Loss of c-Met disrupts gene expression program required for G2/M progression during liver regeneration in mice.

Author information

  • 1Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.

Abstract

BACKGROUND:

Previous work has established that HGF/c-Met signaling plays a pivotal role in regulating the onset of S phase following partial hepatectomy (PH). In this study, we used Met(fl/fl);Alb-Cre(+/-) conditional knockout mice to determine the effects of c-Met dysfunction in hepatocytes on kinetics of liver regeneration.

METHODOLOGY/PRINCIPAL FINDING:

The priming events appeared to be intact in Met(fl/fl);Alb-Cre(+/-) livers. Up-regulation of stress response (MAFK, IKBZ, SOCS3) and early growth response (c-Myc, c-Jun, c-Fos, DUSP1 and 6) genes as assessed by RT-qPCR and/or microarray profiling was unchanged. This was consistent with an early induction of MAPK/Erk and STAT3. However, after a successful completion of the first round of DNA replication, c-Met deficient hepatocytes were blocked in early/mid G2 phase as shown by staining with phosphorylated form of histone H3. Furthermore, loss of c-Met in hepatocytes diminished the subsequent G1/S progression and delayed liver recovery after partial hepatectomy. Upstream signaling pathways involved in the blockage of G2/M transition included lack of persistent Erk1/2 activation and inability to up-regulate the levels of Cdk1, Plk1, Aurora A and B, and Mad2 along with a defective histone 3 phosphorylation and lack of chromatin condensation. Continuous supplementation with EGF in vitro increased proliferation of Met(fl/fl);Alb-Cre(+/-) primary hepatocytes and partially restored expression levels of mitotic cell cycle regulators albeit to a lesser degree as compared to control cultures.

CONCLUSION/SIGNIFICANCE:

In conclusion, our results assign a novel non-redundant function for HGF/c-Met signaling in regulation of G2/M gene expression program via maintaining a persistent Erk1/2 activation throughout liver regeneration.

PMID:
20862286
[PubMed - indexed for MEDLINE]
PMCID:
PMC2940888
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk