Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Appl Physiol. 2011 Feb;111(2):245-52. doi: 10.1007/s00421-010-1647-8. Epub 2010 Sep 21.

Estrogen-induced effects on the neuro-mechanics of hopping in humans.

Author information

  • 1Centre for Health, Exercise and Sports Medicine, School of Physiotherapy, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia. albryant@unimelb.edu.au

Abstract

Estrogen receptors in skeletal muscle suggest a tissue-based mechanism for influencing neuromuscular control. This has important physiological implications for both eumenorrheic women with fluctuating estrogen levels and those with constant and attenuated estrogen levels, i.e., women using the monophasic oral contraceptive pill (MOCP). This study examined the effects of endogenous plasma estrogen levels on leg stiffness (K (LEG)) and foot center of pressure (COP) during hopping. Nineteen females (Age = 28.0 ± 4.2 years, Ht = 1.67 ± 0.07 m, Mass = 61.6 ± 6.8 kg) who had been using the MOCP for at least 12 months together with 19 matched, female, non-MOCP users (Age = 31.9 ± 7.3 years, Ht = 1.63 ± 0.05 m, Mass = 62.5 ± 5.9 kg) participated. Non-MOCP users were tested at the time of lowest (menstruation) and highest (≈ ovulation) estrogen whilst MOCP users were tested at Day 1 and Day 14 of their cycle. At each test session, K (LEG) (N m(-1) kg(-1)) and foot COP path length (mm) and path velocity (mm s(-1)) were determined from ground reaction force data as participants hopped at 2.2 Hz on a force plate. Statistical analysis revealed no significant (p < 0.05) differences for K (LEG). In contrast, significantly higher COP path length (30%) and COP path velocity (25%) were identified at ≈ ovulation compared to menstruation in the non-MOCP users. Whilst there was no evidence of an estrogen-induced effect on K (LEG); significantly elevated estrogen at ≈ ovulation presumably increased extensibility of connective tissue and/or diminished neuromuscular control. Consistent lower limb dynamics of MOCP users demands less reliance on acutely modified neuromuscular control strategies during dynamic tasks and may explain the lower rate of lower limb musculoskeletal injuries in this population compared to non-MOCP users.

PMID:
20857138
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk