Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Brain. 2010 Nov;133(11):3181-93. doi: 10.1093/brain/awq265. Epub 2010 Sep 20.

The greater black krait (Bungarus niger), a newly recognized cause of neuro-myotoxic snake bite envenoming in Bangladesh.

Author information

  • 1Department of Medicine, Sir Salimullah Medical College, Mitford, Dhaka 1100, Bangladesh.

Abstract

Prospective studies of snake bite patients in Chittagong, Bangladesh, included five cases of bites by greater black kraits (Bungarus niger), proven by examination of the snakes that had been responsible. This species was previously known only from India, Nepal, Bhutan and Burma. The index case presented with descending flaccid paralysis typical of neurotoxic envenoming by all Bungarus species, but later developed generalized rhabdomyolysis (peak serum creatine kinase concentration 29,960 units/l) with myoglobinuria and acute renal failure from which he succumbed. Among the other four patients, one died of respiratory paralysis in a peripheral hospital and three recovered after developing paralysis, requiring mechanical ventilation in one patient. One patient suffered severe generalized myalgia and odynophagia associated with a modest increase in serum creatine kinase concentration. These are the first cases of Bungarus niger envenoming to be reported from any country. Generalized rhabdomyolysis has not been previously recognized as a feature of envenoming by any terrestrial Asian elapid snake, but a review of the literature suggests that venoms of some populations of Bungarus candidus and Bungarus multicinctus in Thailand and Vietnam may also have this effect in human victims. To investigate this unexpected property of Bungarus niger venom, venom from the snake responsible for one of the human cases of neuro-myotoxic envenoming was injected into one hind limb of rats and saline into the other under buprenorphine analgesia. All animals developed paralysis of the venom-injected limb within two hours. Twenty-four hours later, the soleus muscles were compared histopathologically and cytochemically. Results indicated a predominantly pre-synaptic action (β-bungarotoxins) of Bungarus niger venom at neuromuscular junctions, causing loss of synaptophysin and the degeneration of the terminal components of the motor innervation of rat skeletal muscle. There was oedema and necrosis of extrafusal muscle fibres in envenomed rat soleus muscles confirming the myotoxic effect of Bungarus niger venom, attributable to phospholipases A₂. This study has demonstrated that Bungarus niger is widely distributed in Bangladesh and confirms the risk of fatal neuro-myotoxic envenoming, especially as no specific antivenom is currently manufactured. The unexpected finding of rhabdomyolysis should prompt further investigation of the venom components responsible. The practical implications of having to treat patients with rhabdomyolysis and consequent acute renal failure, in addition to the more familiar respiratory failure associated with krait bite envenoming, should not be underestimated in a country that is poorly equipped to deal with such emergencies.

PMID:
20855420
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk