Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nat Methods. 2010 Oct;7(10):848-54. doi: 10.1038/nmeth.1505. Epub 2010 Sep 19.

Scanless two-photon excitation of channelrhodopsin-2.

Author information

  • 1Wavefront-Engineering Microscopy Group, Neurophysiology and New Microscopies Laboratory, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8154, Institut National de Santé et de Recherche Médicale U603, Paris Descartes University, Paris, France.

Abstract

Light-gated ion channels and pumps have made it possible to probe intact neural circuits by manipulating the activity of groups of genetically similar neurons. What is needed now is a method for precisely aiming the stimulating light at single neuronal processes, neurons or groups of neurons. We developed a method that combines generalized phase contrast with temporal focusing (TF-GPC) to shape two-photon excitation for this purpose. The illumination patterns are generated automatically from fluorescence images of neurons and shaped to cover the cell body or dendrites, or distributed groups of cells. The TF-GPC two-photon excitation patterns generated large photocurrents in Channelrhodopsin-2-expressing cultured cells and neurons and in mouse acute cortical slices. The amplitudes of the photocurrents can be precisely modulated by controlling the size and shape of the excitation volume and, thereby, be used to trigger single action potentials or trains of action potentials.

Comment in

PMID:
20852649
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk