Send to:

Choose Destination
See comment in PubMed Commons below
Nanotechnology. 2010 Oct 15;21(41):415102. doi: 10.1088/0957-4484/21/41/415102. Epub 2010 Sep 17.

Integrin-targeting thermally cross-linked superparamagnetic iron oxide nanoparticles for combined cancer imaging and drug delivery.

Author information

  • 1School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.


We report multifunctional nanoparticles that are capable of cancer targeting and simultaneous cancer imaging and therapy. The nanoparticles are composed of cyclic arginine-glycine-aspartic acid (cRGD) peptide ligand bioconjugated thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) that enable loading of the anticancer drug doxorubicin (Dox). The cyclic RGD-conjugated TCL-SPION (cRGD_TCL-SPION) had a mean hydrodynamic size of 34 ± 8 nm with approximately 0.39 wt% of cyclic RGD attached to the surface of the nanoparticles. The cRGD_TCL-SPION exhibited preferential binding towards target cancer cells (U87MG, integrin α(v)β(3)+) when analyzed by T(2)-weighted magnetic resonance (MR) imaging. When Dox was loaded onto the polymeric coating layers of cRGD_TCL-SPION via ionic interaction, the resulting Dox-loaded cRGD_TCL-SPION (Dox@cRGD_TCL-SPION) showed much higher cytotoxicity in U87MG cells than Dox@TCL-SPION lacking cRGD (IC(50) value of 0.02 µM versus 0.12 µM). These results suggest that Dox@cRGD_TCL-SPION has potential for use as an integrin-targeted, combined imaging and therapeutic agent.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Write to the Help Desk