Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2011 Jan;1808(1):360-8. doi: 10.1016/j.bbamem.2010.09.003. Epub 2010 Sep 15.

Solution structure of subunit F (Vma7p) of the eukaryotic V(1)V(O) ATPase from Saccharomyces cerevisiae derived from SAXS and NMR spectroscopy.

Author information

  • 1School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.


Vacuolar ATPases use the energy derived from ATP hydrolysis, catalyzed in the A(3)B(3) sector of the V(1) ATPase to pump protons via the membrane-embedded V(O) sector. The energy coupling between the two sectors occurs via the so-called central stalk, to which subunit F does belong. Here we present the first low resolution structure of recombinant subunit F (Vma7p) of a eukaryotic V-ATPase from Saccharomyces cerevisiae, analyzed by small angle X-ray scattering (SAXS). The protein is divided into a 5.5nm long egg-like shaped region, connected via a 1.5nm linker to a hook-like segment at one end. Circular dichroism spectroscopy revealed that subunit F comprises of 43% α-helix, 32% β-sheet and a 25% random coil arrangement. To determine the localization of the N- and C-termini in the protein, the C-terminal truncated form of F, F(1-94) was produced and analyzed by SAXS. Comparison of the F(1-94) shape with the one of subunit F showed the missing hook-like region in F(1-94), supported by the decreased D(max) value of F(1-94) (7.0nm), and indicating that the hook-like region consists of the C-terminal residues. The NMR solution structure of the C-terminal peptide, F(90-116), was solved, displaying an α-helical region between residues 103 and 113. The F(90-116) solution structure fitted well in the hook-like region of subunit F. Finally, the arrangement of subunit F within the V(1) ATPase is discussed.

Copyright © 2010 Elsevier B.V. All rights reserved.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk