Genetic alterations of FGF receptors: an emerging field in clinical cancer diagnostics and therapeutics

Expert Rev Anticancer Ther. 2010 Sep;10(9):1375-9. doi: 10.1586/era.10.128.

Abstract

Evaluation of: Turner N, Pearson A, Sharpe R et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 70(5), 2085-2094 (2010). FGF receptor (FGFR) family members are aberrantly activated during carcinogenesis due to gene amplification, chromosomal translocation and missense mutation. FGFR1 is preferentially amplified in estrogen receptor-positive breast cancer, whereas FGFR2 is amplified in triple-negative breast cancer and diffuse-type gastric cancer. Gene amplification of FGFRs results in ligand-independent FGFR signaling to RAS-ERK, PI3K-AKT and JAK-STAT cascades due to the overexpression of wild-type or C-terminally deleted FGFRs. Cediranib, TKI258, Ki23057, MK-2461 and brivanib are broad-range tyrosine kinase inhibitors targeting FGFRs and other receptors. Clinical application of small-molecule FGFR inhibitors could improve the prognosis of FGFR-driven cancer patients. Diagnostic detection of tumors with FGFR genetic alterations in primary lesion, peritoneal effusion, pleural effusion and bone marrow is necessary to select patients for FGFR-targeted therapeutics.

Publication types

  • Comment