Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Wiley Interdiscip Rev Syst Biol Med. 2010 Jan-Feb;2(1):98-106. doi: 10.1002/wsbm.38.

Systems biology of GAL regulon in Saccharomyces cerevisiae.

Author information

  • 1Department of Chemical Engineering, Indian Institute of Technology, Bombay Mumbai, India.

Abstract

Evolutionary success of an organism depends on its ability to express or adapt to constantly changing environmental conditions. Saccharomyces cerevisiae has evolved an elaborate genetic circuit to regulate the expression of galactose-metabolizing enzymes in the presence of galactose but in the absence of glucose. The circuit possesses molecular mechanisms such as multiple binding sites, cooperativity, autoregulation, nucleocytoplasmic shuttling, and substrate sensing mechanism. Furthermore, the GAL system consists of two positive (activating) feedback and one negative (repressing) feedback loops. These individual mechanisms, elucidated through experimental approach, can be integrated to obtain a system-wide behavior. Mathematical models in conjunction with guided experiments have demonstrated system-level properties such as ultrasensitivity, memory, noise attenuation, rapid response, and sensitive response arising out of the molecular interactions. These system-level properties allow S. cerevisiae to adapt and grow in a galactose medium under noisy and changing environments. This review focuses on system-level models and properties of the GAL regulon.

PMID:
20836013
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk