Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cardiovasc Res. 2011 Jan 1;89(1):41-50. doi: 10.1093/cvr/cvq284. Epub 2010 Sep 7.

Expression of skeletal muscle sodium channel (Nav1.4) or connexin32 prevents reperfusion arrhythmias in murine heart.

Author information

  • 1Department of Pharmacology, Center for Molecular Therapeutics, College of Physicians and Surgeons of Columbia University, 630 West 168 Street, PH 7West-318, New York, NY 10032, USA. ea29@columbia.edu

Abstract

AIMS:

acute myocardial ischaemia induces a decrease in resting membrane potential [which leads to reduction of action potential (AP) V(max)] and intracellular acidification (which closes gap junctions). Both contribute to conduction slowing. We hypothesized that ventricular expression of the skeletal muscle Na(+) channel, Nav1.4 (which activates fully at low membrane potentials), or connexin32 (Cx32, which is less pH-sensitive than connexin43) would support conduction and be antiarrhythmic. We tested this hypothesis in a murine model of ischaemia and reperfusion arrhythmias.

METHODS AND RESULTS:

empty adenovirus (Sham) or adenoviral constructs expressing either SkM1 (gene encoding Nav1.4) or Cx32 genes were injected into the left ventricular wall. Four days later, ventricular tachycardia (VT) occurred during reperfusion following a 5 min coronary occlusion. In Nav1.4- and Cx32-expressing mice, VT incidence and duration were lower than in Sham (P < 0.05). In vitro multisite microelectrode mapping was performed in the superfused right ventricular wall. To simulate ischaemic conditions, [K(+)] in solution was increased to 10 mmol/L and/or pH was decreased to 6.0. Western blots revealed Cx32 and Nav1.4 expression in both ventricles. Nav1.4 APs showed higher V(max) and conduction velocity (CV) than Shams at normal and elevated [K(+)]. Exposure of tissue to acid solution reduced intracellular pH to 6.4. There was no difference in CV between Sham and Cx32 groups in control solution. Acid solution slowed CV in Sham (P < 0.05) but not in Cx32.

CONCLUSION:

Nav1.4 or Cx32 expression preserved normal conduction in murine hearts and decreased the incidence of reperfusion VT.

Comment in

PMID:
20823275
[PubMed - indexed for MEDLINE]
PMCID:
PMC3002874
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk