Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Appl Opt. 2010 Sep 1;49(25):4715-22. doi: 10.1364/AO.49.004715.

Analysis of inverse-Gaussian apodized fiber Bragg grating.

Author information

  • 1Photonics Research Centre, School of Electrical and Electronic Engineering, Nanyang Technological University,50 Nanyang Avenue, Singapore 639798, Singapore.


Inverse-Gaussian apodized fiber Bragg gratings (IGAFBGs) are numerically studied using the transfer matrix method and fabricated by the commonly used phase-mask scanning technique in a single-step scanning process. The IGAFBG can serve as a dual-wavelength passband filter, whose wavelength spacing can be continuously tuned by introducing a tunable chirp through applying a strain gradient in principle. Also, an IGAFBG with identical dual passbands having 0.144nm wavelength spacing is experimentally achieved. We also show that an IGAFBG can act as a multipassband filter with varied free spectral ranges (FSRs), and the largest FSR variation of this IGAFBG is nearly seven times more than that in a comparable FBG pair filter. An IGAFBG with varied FSRs of approximately 16.125, approximately 12.25, approximately 8.5, and approximately 6.375GHz is fabricated. This multipassband varying-FSR IGAFBG filter can find applications in step-tunable microwave generations.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk