Send to:

Choose Destination
See comment in PubMed Commons below
Antioxid Redox Signal. 2011 Jun 15;14(12):2465-77. doi: 10.1089/ars.2010.3369. Epub 2011 Jan 23.

Interrogation of nucleotide excision repair capacity: impact on platinum-based cancer therapy.

Author information

  • 1Department of Medicine/Hematology and Oncology, Indiana University School of Medicine, 980 W. Walnut Street, Indianapolis, IN 46202, USA.


DNA repair is essential for routine monitoring and repair of damage imparted to our genetic material by exposure to endogenous and exogenous carcinogens, including reactive oxygen species, UV light, and chemicals such as those found in cigarette smoke. Without DNA repair pathways, the continual assault on our DNA would be highly mutagenic and the risk of cancer increased. Paradoxically, the same pathways that help prevent cancer development are detrimental to the efficacy of DNA-damaging cancer therapeutics such as cisplatin. Recent studies demonstrate the inverse relationship between DNA repair capacity and efficacy of platinum-based chemotherapeutics: increased DNA repair capacity leads to resistance, while decreased capacity leads to increased sensitivities. Cisplatin's cytotoxic effects are mediated by formation of intrastrand DNA crosslinks, which are predominantly repaired via the nucleotide excision repair (NER) pathway. In an effort to personalize the treatment of cancers based on DNA repair capacity, we developed an ELISA-based assay to measure NER activity accurately and reproducibly as a prognostic for platinum-based treatments. Here we present an overview of DNA repair and its link to cancer and therapeutics. We also present data demonstrating the ability to detect the proteins of the pre-incision complex within the NER pathway from cell and tissue extracts.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk