Identification and characterization of novel NMDA receptor antagonists selective for NR2A- over NR2B-containing receptors

J Pharmacol Exp Ther. 2010 Dec;335(3):636-44. doi: 10.1124/jpet.110.172544. Epub 2010 Sep 1.

Abstract

NR1/NR2A is a subtype of N-methyl-d-aspartate receptors (NMDARs), which are glutamate and glycine-gated Ca(2+)-permeable channels highly expressed in the central nervous system. A high-throughput screening (HTS) campaign using human osteosarcoma (U-2 OS) cells transiently transduced with NR1/NR2A NMDAR subunits, tested in a specifically designed fluorometric imaging plate reader (FLIPR)/Ca(2+) assay, identified sulfonamide derivative series, exemplified by 3-chloro-4-fluoro-N-[(4-{[2-(phenylcarbonyl)hydrazino]carbonyl}phenyl)methyl]benzenesulfonamide (compound 1) and thiodiazole derivative N-(cyclohexylmethyl)-2-({5-[(phenylmethyl)amino]-1,3,4-thiadiazol-2-yl}thio)acetamide (compound 13) as novel NR1/NR2A receptor antagonists. Compounds 1 and 13 displayed submicromolar and micromolar potency at NR1/NR2A receptor, respectively, although they did not show activity at NR2B-containing receptor up to 50 μM concentration. Addition of 1 mM glycine, but not 1 mM l-glutamate, was able to surmount compound 1 and 13 inhibitory effects in FLIPR NR1/NR2A assay. However, compounds 1 and 13 displaced a glutamate site antagonist [(3)H]d,l-(E)-2-amino-4-propyl-5-phosphono-3-pentenoic acid ([(3)H]CGP 39653) to a greater extent than the glycine site antagonist [(3)H]3-[(E)-2-carboxy-2-phenylethenyl]-4,6-dichloro-1H-indole-2-carboxylic acid ([(3)H]MDL 105,519), in rat brain cortex binding assay. Results of FLIPR cell-based, electrophysiological, and biochemical binding assays suggest that compounds 1 and 13 are the prototypes of novel classes of NMDAR ligands, which to the best of our knowledge are the first selective antagonists at NR1/NR2A over NR1/NR2B receptor, and might constitute useful tools able to elucidate the relative role of the NR2A subunit in physiological and pathological conditions.

MeSH terms

  • Animals
  • Binding, Competitive
  • Calcium Signaling / drug effects
  • Cell Line, Tumor
  • Cell Membrane / metabolism
  • Cerebral Cortex / cytology
  • Drug Evaluation, Preclinical / methods
  • Excitatory Amino Acid Antagonists / chemistry
  • Excitatory Amino Acid Antagonists / metabolism*
  • Excitatory Amino Acid Antagonists / pharmacology*
  • Excitatory Postsynaptic Potentials / drug effects
  • Fluorometry / methods
  • Glutamic Acid / pharmacology
  • Glycine / pharmacology
  • HEK293 Cells
  • Humans
  • Male
  • Molecular Structure
  • N-Methylaspartate / pharmacology
  • Neurons / cytology
  • Neurons / drug effects
  • Neurons / metabolism
  • Patch-Clamp Techniques
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, N-Methyl-D-Aspartate / antagonists & inhibitors*
  • Receptors, N-Methyl-D-Aspartate / genetics
  • Receptors, N-Methyl-D-Aspartate / metabolism
  • Transfection

Substances

  • Excitatory Amino Acid Antagonists
  • NR1 NMDA receptor
  • NR2A NMDA receptor
  • NR2B NMDA receptor
  • Receptors, N-Methyl-D-Aspartate
  • Glutamic Acid
  • N-Methylaspartate
  • Glycine