Send to:

Choose Destination
See comment in PubMed Commons below
Purinergic Signal. 2010 Jun;6(2):211-20. doi: 10.1007/s11302-010-9186-7. Epub 2010 Jun 8.

Role of nitric oxide on purinergic signalling in the cochlea.

Author information

  • 1Harada Ear Institute, Tomoi 2-34-27, Higashiosaka, Osaka, 577-0816 Japan.


In the inner ear, there is considerable evidence that extracellular adenosine 5'-triphosphate (ATP) plays an important role in auditory neurotransmission as a neurotransmitter or a neuromodulator, although the potential role of adenosine signalling in the modulation of auditory neurotransmission has also been reported. The activation of ligand-gated ionotropic P2X receptors and G protein-coupled metabotropic P2Y receptors has been reported to induce an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) in inner hair cells (IHCs), outer hair cells (OHCs), spiral ganglion neurons (SGNs), and supporting cells in the cochlea. ATP may participate in auditory neurotransmission by modulating [Ca(2+)](i) in the cochlear cells. Recent studies showed that extracellular ATP induced nitric oxide (NO) production in IHCs, OHCs, and SGNs, which affects the ATP-induced Ca(2+) response via the NO-cGMP-PKG pathway in those cells by a feedback mechanism. A cross-talk between NO and ATP may therefore exist in the auditory signal transduction. In the present article, I review the role of NO on the ATP-induced Ca(2+) signalling in IHCs and OHCs. I also consider the possible role of NO in the ATP-induced Ca(2+) signalling in SGNs and supporting cells.


Cochlea; Feedback; Nitric oxide; P2 receptors

Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Write to the Help Desk