Send to

Choose Destination
See comment in PubMed Commons below
Anal Biochem. 2011 Jan 1;408(1):46-52. doi: 10.1016/j.ab.2010.08.028. Epub 2010 Sep 15.

Nanodiscs allow the use of integral membrane proteins as analytes in surface plasmon resonance studies.

Author information

  • 1Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany.


Nanodiscs are small-sized and flat model membranes that provide a close to native environment for reconstitution of integral membrane proteins. Incorporation of membrane proteins into nanodiscs results in water-soluble proteolipid particles making the membrane proteins amenable to a multitude of bioanalytical techniques originally developed for soluble proteins. The transmembrane domain of the human CD4 receptor was fused to ubiquitin with a preceding N-terminal decahistidine tag. The resulting integral membrane protein was incorporated into nanodiscs. Binding of the nanodisc-inserted histidine-tagged protein to a monoclonal anti-pentahistidine antibody was quantified using surface plasmon resonance (SPR) experiments. For the first time, a membrane-inserted transmembrane protein was employed as analyte while the antibody served as ligand immobilized on the sensor chip surface. SPR experiments were conducted in single-cycle mode. We demonstrate that the nanodisc-incorporated membrane protein showed nearly identical affinity toward the antibody as did the soluble decahistidine-tagged ubiquitin studied in a comparative experiment. Advantages of the new experimental setup and potential applications are discussed.

Copyright © 2010 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk