Send to:

Choose Destination
See comment in PubMed Commons below
ACS Nano. 2010 Sep 28;4(9):4971-8. doi: 10.1021/nn100560p.

Biological evaluation of pH-responsive polymer-caged nanobins for breast cancer therapy.

Author information

  • 1Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.


A series of doxorubicin-loaded polymer-caged nanobins (PCN(DXR)) were evaluated in vivo in a murine MDA-MB-231 xenograft model of triple-negative breast cancer. The cross-linked polymer cage in PCN(DXR) offers protection for the drug payload while serving as a pH-responsive trigger that enhances drug release in the acidic environments commonly seen in solid tumors and endosomes. Varying the degree of cross-linking in the polymer cage allows the surface potential of PCN(DXR), and thus the in vivo circulation lifetime of the nanocarriers, to be tuned in a facile fashion. Given these design advantages, the present study provides the first in vivo evidence that PCN(DXR) can effectively inhibit tumor growth in a murine model of breast cancer. Importantly, PCN(DXR) was well-tolerated by mice, and drug encapsulation attenuated the toxicity of free doxorubicin. Taken together, this study demonstrates the potential utility of the PCN platform in cancer therapy.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk