Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
EMBO J. 2010 Sep 15;29(18):3082-93. doi: 10.1038/emboj.2010.199. Epub 2010 Aug 20.

A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression.

Author information

  • 1Laboratoire de Biologie Cellulaire de la Synapse, Inserm 1024/CNRS 8197, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France.

Abstract

A growing number of long nuclear-retained non-coding RNAs (ncRNAs) have recently been described. However, few functions have been elucidated for these ncRNAs. Here, we have characterized the function of one such ncRNA, identified as metastasis-associated lung adenocarcinoma transcript 1 (Malat1). Malat1 RNA is expressed in numerous tissues and is highly abundant in neurons. It is enriched in nuclear speckles only when RNA polymerase II-dependent transcription is active. Knock-down studies revealed that Malat1 modulates the recruitment of SR family pre-mRNA-splicing factors to the transcription site of a transgene array. DNA microarray analysis in Malat1-depleted neuroblastoma cells indicates that Malat1 controls the expression of genes involved not only in nuclear processes, but also in synapse function. In cultured hippocampal neurons, knock-down of Malat1 decreases synaptic density, whereas its over-expression results in a cell-autonomous increase in synaptic density. Our results suggest that Malat1 regulates synapse formation by modulating the expression of genes involved in synapse formation and/or maintenance.

PMID:
20729808
[PubMed - indexed for MEDLINE]
PMCID:
PMC2944070
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk