Send to:

Choose Destination
See comment in PubMed Commons below
J Electromyogr Kinesiol. 1997 Jun;7(2):87-96.

Normality and stationarity of EMG signals of elbow flexor muscles during ramp and step isometric contractions.

Author information

  • 1Physical Therapy Graduate Program, College of Medicine, University of Iowa, Iowa City, IA 52242, U.S.A.


The purpose of this study was to test the stationarity and normality of electromyographic (EMG) signals obtained while exerting isometric contractions: (a) where a steady force level is maintained (step contractions); and (b) where the force level is increased linearly over time (ramp contractions). Ramp elbow flexions were performed from 0 to 100% of the maximum voluntary contraction (MVC) in a 5-s period. For the step contractions, four force levels (20, 40, 60 and 80% MVC) were maintained for a period of 3 s each. EMG signals of the biceps brachii (BB) and brachioradialis (BR) muscles of 16 subjects were recorded with surface electrodes and digitized at a sampling frequency of 2000 Hz. Tests of normality (Shapiro-Wilk test) and stationarity (reverse arrangement test) were performed locally on short finite time records (512-ms windows). Results show that, in general, EMG signals present a non-Gaussian amplitude distribution and are stationary. Furthermore, the amplitude distribution characteristics and the stationarity of the signal were not dependent on the muscle investigated, nor on the type of contraction or force level tested. The finding of local stationarity for both tasks is important, because it suggests that performing standard spectral analysis is applicable for both step and ramp contractions. It also allows a direct comparison between results obtained under both conditions.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk