Send to:

Choose Destination
See comment in PubMed Commons below
Int J Mol Sci. 2010 Jul 2;11(7):2636-57. doi: 10.3390/ijms11072636.

Conducting polymer nanostructures: template synthesis and applications in energy storage.

Author information

  • 1National Laboratory of Microstructures (Nanjing), Key Laboratory of Advanced Photonic and Electronic Materials of Jiangsu Province, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, Jiangsu Province, China.


Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.


conducting polymers; nanotubes; nanowires; polyaniline; polypyrrole; template synthesis

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk