Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Cancer. 2011 Jun 1;128(11):2581-90. doi: 10.1002/ijc.25610. Epub 2010 Oct 8.

NADPH oxidase overexpression in human colon cancers and rat colon tumors induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP).

Author information

  • 1Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA.

Abstract

NADPH oxidase/dual-oxidase (Nox/Duox) family members have been implicated in nuclear factor kappa-B (NFκB)-mediated inflammation and inflammation-associated pathologies. We sought to examine, for the first time, the role of Nox/Duox and NFκB in rats treated with the cooked meat heterocyclic amine carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). In the PhIP-induced colon tumors obtained after 1 year, Nox1, Nox4, NFκB-p50 and NFκB-p65 were all highly overexpressed compared with their levels in adjacent normal-looking colonic mucosa. Nox1 and Nox4 mRNA and protein levels also were markedly elevated in a panel of primary human colon cancers, compared with their matched controls. In HT29 human colon cancer cells, Nox1 knockdown induced G1 cell cycle arrest, whereas in Caco-2 cells there was a strong apoptotic response, with increased levels of cleaved caspase-3, -6, -7 and poly(ADP-ribose)polymerase. Nox1 knockdown blocked lipopolysaccharide-induced phosphorylation of IκB kinase, inhibited the nuclear translocation of NFκB (p50 and p65) proteins, and attenuated NFκB DNA binding activity. There was a corresponding reduction in the expression of downstream NFκB targets, such as MYC, CCND1 and IL1β. The results provide the first evidence for a role of Nox1, Nox4 and NFκB in PhIP-induced colon carcinogenesis, including during the early stages before tumor onset. Collectively, the findings from this investigation and others suggest that further work is warranted on the role of Nox/Duox family members and NFκB in colon cancer development.

Copyright © 2010 UICC.

PMID:
20715105
[PubMed - indexed for MEDLINE]
PMCID:
PMC3262595
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk