Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Mol Cell Cardiol. 2010 Nov;49(5):841-50. doi: 10.1016/j.yjmcc.2010.08.007. Epub 2010 Aug 11.

Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death.

Author information

  • 1Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0575, USA.

Abstract

Among the identified microRNAs (miRs) thus far, ~50% of mammalian miRs are clustered in the genome and transcribed as polycistronic primary transcripts. However, whether clustered miRs mediate non-redundant and cooperative functions remains poorly understood. In this study, we first identified activation of the promoter of miR-144/451 by GATA-4, a critical transcription factor in the heart. Next, we observed that ectopic expression of miR-144 and -451 individually augmented cardiomyocyte survival, which was further improved by overexpression of miR-144/451, compared to control cells in response to simulated ischemia/reperfusion. In contrast, knockdown of endogenous miR-144 and -451 revealed opposite effects. Using luciferase reporter assay and western blot analysis, we also validated that both miR-144 and miR-451 target CUG triplet repeat-binding protein 2 (CUGBP2), a ubiquitously expressed RNA-binding protein, known to interact with COX-2 3'UTR and inhibit its translation. Accordingly, protein levels of CUGBP2 were greatly reduced and COX-2 activity was markedly increased in miR-144-, miR-451-, and miR-144/451-overexpressing cardiomyocytes, compared to GFP cells. Furthermore, inhibition of COX-2 activity by either NS-398 or DUP-697 partially offset protective effects of the miR-144/451 cluster. Together, these data indicate that both partners of the miR-144/451 cluster confer protection against simulated I/R-induced cardiomyocyte death via targeting CUGBP2-COX-2 pathway, at least in part. Thus, both miR-144 and miR-451 may represent new therapeutic agents for the treatment of ischemic heart disease.

Copyright © 2010 Elsevier Ltd. All rights reserved.

PMID:
20708014
[PubMed - indexed for MEDLINE]
PMCID:
PMC2949485
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk