Display Settings:

Format

Send to:

Choose Destination
Exp Eye Res. 2011 Aug;93(2):156-64. doi: 10.1016/j.exer.2010.08.005. Epub 2010 Aug 11.

Pathophysiology of human glaucomatous optic nerve damage: insights from rodent models of glaucoma.

Author information

  • 1The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, CERES, 3375 SW Terwilliger Bvld, Portland, OR 97239, USA. morrisoj@ohsu.edu

Abstract

Understanding mechanisms of glaucomatous optic nerve damage is essential for developing effective therapies to augment conventional pressure-lowering treatments. This requires that we understand not only the physical forces in play, but the cellular responses that translate these forces into axonal injury. The former are best understood by using primate models, in which a well-developed lamina cribrosa, peripapillary sclera and blood supply are most like that of the human optic nerve head. However, determining cellular responses to elevated intraocular pressure (IOP) and relating their contribution to axonal injury require cell biology techniques, using animals in numbers sufficient to perform reliable statistical analyses and draw meaningful conclusions. Over the years, models of chronically elevated IOP in laboratory rats and mice have proven increasingly useful for these purposes. While lacking a distinct collagenous lamina cribrosa, the rodent optic nerve head (ONH) possesses a cellular arrangement of astrocytes, or glial lamina, that ultrastructurally closely resembles that of the primate. Using these tools, major insights have been gained into ONH and the retinal cellular responses to elevated IOP that, in time, can be applied to the primate model and, ultimately, human glaucoma.

Copyright © 2010 Elsevier Ltd. All rights reserved.

PMID:
20708000
[PubMed - indexed for MEDLINE]
PMCID:
PMC3010442
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk