Send to

Choose Destination
See comment in PubMed Commons below
Chem Res Toxicol. 2010 Aug 16;23(8):1342-8. doi: 10.1021/tx100083x.

Malondialdehyde-deoxyguanosine adduct formation in workers of pathology wards: the role of air formaldehyde exposure.

Author information

  • 1Department Of Public Health and Microbiology, University of Turin, Italy, Via Santena 5 bis, Turin, Italy.


Formaldehyde is an ubiquitous pollutant to which humans are exposed. Pathologists can experience high formaldehyde exposure levels. Formaldehyde-among other properties-induce oxidative stress and free radicals, which react with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. We measured the levels of air-formaldehyde exposure in a group of Italian pathologists and controls. We analyzed the effect of formaldehyde exposure on leukocyte malondialdehyde-deoxyguanosine adducts (M(1)-dG), a biomarker of oxidative stress and lipid peroxidation. We studied the relationship between air-formaldehyde and M(1)-dG adducts. Air-formaldehyde levels were measured by personal air samplers. M(1)-dG adducts were analyzed by a (32)P-postlabeling assay. Reduction room pathologists were significantly exposed to air-formaldehyde with respect to controls and to the pathologists working in other laboratory areas (p < 0.001). A significant difference for M(1)-dG adducts between exposed pathologists and controls was found (p = 0.045). The effect becomes stronger when the evaluation of air-formaldehyde exposure was based on personal samplers (p = 0.018). Increased M(1)dG adduct levels were only found in individuals exposed to air-formaldehyde concentrations higher than 66 microg/m(3). When the exposed workers and controls were subgrouped according to smoking, M(1)-dG tended to increase in all of the subjects, but a significant association between M(1)-dG and air-formaldehyde was only found in nonsmokers (p = 0.009). Air-formaldehyde played a role positive but not significant (r = 0.355, p = 0.075, Pearson correlation) in the formation of M(1)-dG, only in nonsmokers. Working in the reduction rooms and exposure to air-formaldehyde concentrations higher than 66 microg/m(3) are associated with increased levels of M(1)-dG adducts.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk