Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Endocrinol Metab. 2011 Feb;300(2):E263-75. doi: 10.1152/ajpendo.00210.2010. Epub 2010 Aug 10.

Androgen deprivation induces rapid involution and recovery of human prostate vasculature.

Author information

  • 1Depatment of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.

Abstract

The response of the prostate tissue microenvironment to androgen deprivation (AD) represents a critical component in the treatment of benign prostatic hyperplasia and prostate cancer (CaP). Primary xenografts of human benign and CaP tissue transplanted to immunocompromized SCID mice were used to characterize the response of the prostate vasculature during the initial 14 days of AD. Microvessel density and vascular lumen diameter in the prostate xenografts decreased rapidly after AD, reached a nadir on days 2-4, and recovered between days 4 and 14. The number of apoptotic endothelial cells peaked on day 2 after AD and decreased to precastration levels over days 4-7. Leakage of vascular contents in the interstitial space was apparent between days 1 and 3 after AD; however, the vascular permeability barrier reestablished between days 7 and 14. Expression of vascular endothelial growth factor (VEGF)-A, VEGF receptor-2, and basic fibroblast growth factor protein increased in endothelial cells between days 2 and 4 after AD, which preceded vascular recovery and appeared to be a direct and specific response of the endothelial cells to AD. Lack of comparable upregulation of these genes in primary cultures of human prostate endothelial cells in response to AD suggests a role for paracrine signaling mediated through stromal or epithelial cells. VEGF-A expression by prostate endothelial cells appears to represent a key facilitator of the vascular rebound in human prostate tissue induced by removal of circulating testicular androgens.

PMID:
20699437
[PubMed - indexed for MEDLINE]
PMCID:
PMC3280699
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk