Quantum-chemical study and FTIR jet spectroscopy of CHCl(3)-NH(3) association in the gas phase

Phys Chem Chem Phys. 2010 Nov 7;12(41):13555-65. doi: 10.1039/c0cp00530d. Epub 2010 Aug 9.

Abstract

High level ab initio quantum chemical calculations have been performed on the association of chloroform with ammonia in the gas phase (counterpoise corrected MP2 and coupled-cluster CCSD(T) calculations with 6-311++G(d,p) basis functions). Minimum energy equilibrium structures have been found for CHCl(3)-NH(3) dimer, CHCl(3)-(NH(3))(2) trimer and CHCl(3)-(NH(3))(3) tetramer. Association is characterised by a CHN hydrogen bond between a chloroform and an ammonia molecule, with further ammonia units attached by hydrogen bonds to ammonia and by an electrostatic NHCl interaction to chloroform. Cooperative effects provide additional stabilisation. The complexes exhibit characteristic shifts of vibrational bands and change of IR intensity; in particular there is a pronounced progressive shift of the CH-stretching vibration towards lower wavenumber with each unit of ammonia attached in the complex. The shift is accompanied by an up to 600 fold increase in IR intensity. The experimental FTIR jet spectra have provided firm evidence of CHCl(3)-NH(3) association, with the clearest effects seen in the region of the CH-stretching vibration. First tentative assignments have been made based on the dependence of relative intensities of cluster features on the concentration of monomers, and assignments have been corroborated by the quantum chemical calculations. The present combined ab initio and FTIR spectroscopy study reveals the structure and energetics of cluster formation and intermolecular bonding in CHCl(3)-NH(3) association.