Display Settings:


Send to:

Choose Destination
Am J Hum Genet. 2010 Aug 13;87(2):289-96. doi: 10.1016/j.ajhg.2010.07.009.

Homozygous nonsense mutations in TWIST2 cause Setleis syndrome.

Author information

  • 1Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA.


The focal facial dermal dysplasias (FFDDs) are a group of inherited developmental disorders in which the characteristic diagnostic feature is bitemporal scar-like lesions that resemble forceps marks. To date, the genetic defects underlying these ectodermal dysplasias have not been determined. To identify the gene defect causing autosomal-recessive Setleis syndrome (type III FFDD), homozygosity mapping was performed with genomic DNAs from five affected individuals and 26 members of the consanguineous Puerto Rican (PR) family originally described by Setleis and colleagues. Microsatellites D2S1397 and D2S2968 were homozygous in all affected individuals, mapping the disease locus to 2q37.3. Haplotype analyses of additional markers in the PR family and a consanguineous Arab family further limited the disease locus to approximately 3 Mb between D2S2949 and D2S2253. Of the 29 candidate genes in this region, the bHLH transcription factor, TWIST2, was initially sequenced on the basis of its known involvement in murine facial development. Homozygous TWIST2 nonsense mutations, c.324C>T and c.486C>T, were identified in the affected members of the Arab and PR families, respectively. Characterization of the expressed mutant proteins, p.Q65X and p.Q119X, by electrophoretic mobility shift assays and immunoblot analyses indicated that they were truncated and unstable. Notably, Setleis syndrome patients and Twist2 knockout mice have similar facial features, indicating the gene's conserved role in mammalian development. Although human TWIST2 and TWIST1 encode highly homologous bHLH transcription factors, the finding that TWIST2 recessive mutations cause an FFDD and dominant TWIST1 mutations cause Saethre-Chotzen craniocynostosis suggests that they function independently in skin and bone development.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms


Grant Support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk