Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Med Chem. 2010 Aug 12;53(15):5792-800. doi: 10.1021/jm1005379.

The sugar ring of the nucleoside is required for productive substrate positioning in the active site of human deoxycytidine kinase (dCK): implications for the development of dCK-activated acyclic guanine analogues.

Author information

  • 1Department of Biochemistry and Molecular Genetics University of Illinois at Chicago, Chicago, Illinois 60607, USA.

Abstract

The low toxicity of acyclovir (ACV) is mainly due to the fact that human nucleoside kinases have undetectable phosphorylation rates with this acyclic guanine analogue. In contrast, herpes virus thymidine kinase (HSV1-TK) readily activates ACV. We wanted to understand why human deoxycytidine kinase (dCK), which is related to HSV1-TK and phosphorylates deoxyguanosine, does not accept acyclic guanine analogues as substrates. Therefore, we crystallized dCK in complex with ACV at the nucleoside phosphoryl acceptor site and UDP at the phosphoryl donor site. The structure reveals that while ACV does bind at the dCK active site, it does so adopting a nonproductive conformation. Despite binding ACV, the enzyme remains in the open, inactive state. In comparison to ACV binding to HSV1-TK, in dCK, the nucleoside base adopts a different orientation related by about a 60 degrees rotation. Our analysis suggests that dCK would phosphorylate acyclic guanine analogues if they can induce a similar rotation.

PMID:
20684612
[PubMed - indexed for MEDLINE]
PMCID:
PMC2936711
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk