Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Diabetes. 2010 Oct;59(10):2474-83. doi: 10.2337/db10-0245. Epub 2010 Aug 3.

Acute stimulation of white adipocyte respiration by PKA-induced lipolysis.

Author information

  • 1Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA.

Erratum in

  • Diabetes. 2011 Feb;60(2):691.

Abstract

OBJECTIVE:

We examined the effect of β-adrenergic receptor (βAR) activation and cAMP-elevating agents on respiration and mitochondrial uncoupling in human adipocytes and probed the underlying molecular mechanisms.

RESEARCH DESIGN AND METHODS:

Oxygen consumption rate (OCR, aerobic respiration) and extracellular acidification rate (ECAR, anaerobic respiration) were examined in response to isoproterenol (ISO), forskolin (FSK), and dibutyryl-cAMP (DB), coupled with measurements of mitochondrial depolarization, lipolysis, kinase activities, and gene targeting or knock-down approaches.

RESULTS:

ISO, FSK, or DB rapidly increased oxidative and glycolytic respiration together with mitochondrial depolarization in human and mouse white adipocytes. The increase in OCR was oligomycin-insensitive and contingent on cAMP-dependent protein kinase A (PKA)-induced lipolysis. This increased respiration and the uncoupling were blocked by inhibiting the mitochondrial permeability transition pore (PTP) and its regulator, BAX. Interestingly, compared with lean individuals, adipocytes from obese subjects exhibited reduced OCR and uncoupling capacity in response to ISO.

CONCLUSIONS:

Lipolysis stimulated by βAR activation or other maneuvers that increase cAMP levels in white adipocytes acutely induces mitochondrial uncoupling and cellular energetics, which are amplified in the absence of scavenging BSA. The increase in OCR is dependent on PKA-induced lipolysis and is mediated by the PTP and BAX. Because this effect is reduced with obesity, further exploration of this uncoupling mechanism will be needed to determine its cause and consequences.

PMID:
20682684
[PubMed - indexed for MEDLINE]
PMCID:
PMC3279548
Free PMC Article

Images from this publication.See all images (8)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk