Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Agric Food Chem. 2010 Aug 11;58(15):8651-7. doi: 10.1021/jf1016384.

Genes and biochemical characterization of three novel chlorophyllase isozymes from Brassica oleracea.

Author information

  • 1Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.


Three full length cDNAs (BoCLH1, 1140 bp; BoCLH2, 1104 bp; BoCLH3, 884 bp) encoding putative chlorophyllases were cloned from the cDNA pools of broccoli (Brassica oleracea) florets and characterized. The amino acid sequence analysis indicated that these three BoCLHs contained a highly conserved lipase motif (GXSXG). However, only BoCLH3 lacked the His residue which is the component of the catalytic triad (Ser-His-Asp). N-terminal sequences of BoCLH1 and BoCLH2 were predicted to have typical signal sequences for the chloroplast, whereas the plasma membrane-targeting sequence was identified in BoCLH3. The predicted molecular masses of BoCLH1, 2, and 3 were 34.7, 35.3, and 23.5 kDa, respectively. The recombinant BoCLHs were successfully expressed in Escherichia coli for the biochemical characterization. The recombinant BoCLH3 showed very low chlorophyllase activity possibly due to its incomplete catalytic triad. BoCLH1 and BoCLH2 showed significant differences in biochemical properties such as pH stability and temperature optimum. Kinetic analysis revealed that BoCLH1 preferably hydrolyzed Mg-free chlorophyll, while BoCLH2 hydrolyzed both chlorophyll and Mg-free chlorophyll at a similar level. Different characteristics between BoCLH1 and BoCLH2 implied that they may have different physiological functions in broccoli. The catalytic triad of recombinant BoCLH2 was identified as Ser141, His247, and Asp170 by site-directed mutagenesis. It suggested that the three broccoli chlorophyllase isozymes were serine hydrolases.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk