Send to:

Choose Destination
See comment in PubMed Commons below
Int Conf Digit Signal Process Proc. 2008 Dec 11;2008:426-433.

Force feature spaces for visualization and classification.

Author information

  • 1Department of Computer Science, University of Texas at San Antonio, USA.


Distance-preserving dimension reduction techniques can fail to separate elements of different classes when the neighborhood structure does not carry sufficient class information. We introduce a new visual technique, K-epsilon diagrams, to analyze dataset topological structure and to assess whether intra-class and inter-class neighborhoods can be distinguished.We propose a force feature space data transform that emphasizes similarities between same-class points and enhances class separability. We show that the force feature space transform combined with distance-preserving dimension reduction produces better visualizations than dimension reduction alone. When used for classification, force feature spaces improve performance of K-nearest neighbor classifiers. Furthermore, the quality of force feature space transformations can be assessed using K-epsilon diagrams.

Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk