Send to

Choose Destination
See comment in PubMed Commons below
J Am Soc Nephrol. 2010 Oct;21(10):1678-90. doi: 10.1681/ASN.2009121234. Epub 2010 Jul 29.

A maladaptive role for EP4 receptors in podocytes.

Author information

  • 1Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.


Inhibition of p38 mitogen-activated protein kinase and cyclooxygenase-2 reduces albuminuria in models of chronic kidney disease marked by podocyte injury. Previously, we identified a feedback loop in podocytes whereby an in vitro surrogate for glomerular capillary pressure (i.e., mechanical stretch) along with prostaglandin E(2) stimulation of its EP4 receptor induced cyclooxygenase-2 in a p38-dependent manner. Here we asked whether stimulation of EP4 receptors would exacerbate glomerulopathies associated with enhanced glomerular capillary pressure. We generated mice with either podocyte-specific overexpression or depletion of the EP4 receptor (EP4(pod+) and EP4(pod-/-), respectively). Glomerular prostaglandin E(2)-stimulated cAMP levels were eightfold greater for EP4(pod+) mice compared with nontransgenic (non-TG) mice. In contrast, EP4 mRNA levels were >50% lower, and prostaglandin E(2)-induced cAMP synthesis was absent in podocytes isolated from EP4(pod-/-) mice. Non-TG and EP4(pod+) mice underwent 5/6 nephrectomy and exhibited similar increases in systolic BP (+25 mmHg) by 4 weeks compared with sham-operated controls. Two weeks after nephrectomy, the albumin-creatinine ratio of EP4(pod+) mice (3438 μg/mg) was significantly higher than that of non-TG mice (773 μg/mg; P < 0.0001). Consistent with more severe renal injury, the survival rate for nephrectomized EP4(pod+) mice was significantly lower than that for non-TG mice (14 versus 67%). In contrast, 6 weeks after nephrectomy, the albumin-creatinine ratio of EP4(pod-/-) mice (753 μg/mg) was significantly lower than that of non-TG mice (2516 μg/mg; P < 0.05). These findings suggest that prostaglandin E(2), acting via EP4 receptors contributes to podocyte injury and compromises the glomerular filtration barrier.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk