Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2010 Oct 8;285(41):31087-93. doi: 10.1074/jbc.R110.159079. Epub 2010 Jul 29.

GATA switches as developmental drivers.

Author information

  • 1Division of Hematology/Oncology, Department of Pharmacology, Paul Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA. ehbresni@wisc.edu

Abstract

Transcriptional networks orchestrate complex developmental processes. Such networks are commonly instigated by master regulators of development. Considerable progress has been made in elucidating GATA factor-dependent genetic networks that control blood cell development. GATA-2 is required for the genesis and/or function of hematopoietic stem cells, whereas GATA-1 drives the differentiation of hematopoietic progenitors into a subset of the blood cell lineages. GATA-1 directly represses Gata2 transcription, and this involves GATA-1-mediated displacement of GATA-2 from chromatin, a process termed a GATA switch. GATA switches occur at numerous loci with critical functions, indicating that they are widely utilized developmental control tools.

PMID:
20670937
[PubMed - indexed for MEDLINE]
PMCID:
PMC2951181
Free PMC Article

Images from this publication.See all images (3)Free text

FIGURE 1.
FIGURE 2.
FIGURE 3.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk