Send to

Choose Destination
See comment in PubMed Commons below
Autoimmunity. 2011 Feb;44(1):43-50. doi: 10.3109/08916931003782163. Epub 2010 Jul 29.

Therapeutic potential of TGF-β-induced CD4(+) Foxp3(+) regulatory T cells in autoimmune diseases.

Author information

  • 1Division of Rheumatology and Immunology, Department of Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, CA 90033, USA.


Foxp3(+) T regulatory cell (Treg) subsets play a crucial role in the maintenance of immune homeostasis against self-antigens. The lack or dysfunction of these cells contributes to the pathogenesis and development of many autoimmune diseases. Therefore, manipulation of these cells may provide a novel therapeutic approach to treat autoimmune diseases. In this review, we provide current opinions concerning the classification, developmental, and functional characterization of Treg subsets. Particular emphasis will be focused on the therapeutic role of TGF-β-induced CD4M(+) Foxp3(+) cells (iTregs) in established autoimmune disease. Moreover, the similarity and diversity of iTregs and naturally occurring, thymus-derived CD4(+) CD25(+) Foxp3(+) regulatory T cells (nTregs) will be discussed, including the finding that the pro-inflammatory cytokine IL-6 can convert nTregs to IL-17-producing cells, whereas iTregs induced by TGF-β are resistant to the effects of this cytokine. Understanding these aspects may help to determine how Tregs can be used in the treatment of autoimmune diseases.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis Icon for PubMed Central
    Loading ...
    Write to the Help Desk