Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Food Chem Toxicol. 2010 Oct;48(10):2934-44. doi: 10.1016/j.fct.2010.07.030. Epub 2010 Jul 25.

Cytogenetic evaluation and DNA interaction studies of the food colorants amaranth, erythrosine and tartrazine.

Author information

  • 1Department of Genetics, Medical School, Demokrition University of Thrace, Alexandroupolis, Greece.

Abstract

Food coloring agents, amaranth, erythrosine and tartrazine have been tested at 0.02-8mM in human peripheral blood cells in vitro, in order to investigate their genotoxic, cytotoxic and cytostatic potential. Amaranth at the highest concentration (8mM) demonstrates high genotoxicity, cytostaticity and cytotoxicity. The frequency of SCEs/cell was increased 1.7 times over the control level. Additionally, erythrosine at 8, 4 and 2mM shows a high cytotoxicity and cytostaticity. Finally, tartrazine seems to be toxic at 8 and 4mM. No signs of genotoxicity were observed. Reversely, tartrazine showed cytotoxicity at 1 and 2mM. Furthermore, spectroscopic titration studies for the interaction of these food additives with DNA showed that these dyes bind to calf thymus DNA and distinct isosbestic points are observed clearly suggesting binding of the dyes to DNA. Additionally DNA electrophoretic mobility experiments showed that these colorants are obviously capable for strong binding to linear dsDNA causing its degradation. PCR amplification of all DNA fragments (which previously were pre-treated with three different concentrations of the colorants, extracted from agarose gel after separation and then purified), seems to be attenuated with a manner dye concentration-dependent reflecting in a delayed electrophoretic mobility due to the possible binding of some molecules of the dyes. Evaluation of the data and curves were obtained after quantitative and qualitative analysis of the lanes of the gel by an analyzer computer program. Our results indicate that these food colorants had a toxic potential to human lymphocytes in vitro and it seems that they bind directly to DNA.

Copyright (c) 2010 Elsevier Ltd. All rights reserved.

PMID:
20667460
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk